Case Report

Effects of Complex Korean Medicine Treatment on a Patient with Knee Pain and Ankylosis Following a Distal Femur Osteotomy: A Case Report

Han Bin Park 1,*, Eun Sil Heo 2, Dong Hwi Yoo 1, Won Suk Jang 1, Oh Bin Kwon 1, Ki Won Choi 3, Min Jin Kwon 3, Tae Ju Kim 3, Seon Woo Jang 4, Oh Hoon Kwon 5

1 Department of Acupuncture and Moxibustion, Haeundae Jaseng Hospital of Korean Medicine, Busan, Korea
2 Department of Acupuncture and Moxibustion, College of Korean Medicine, Daegu Haany University, Daegu, Korea
3 Department of Internal Medicine of Korean Medicine, Haeundae Jaseng Hospital of Korean Medicine, Busan, Korea
4 Department of Oriental Neuropsychiatry, Haeundae Jaseng Hospital of Korean Medicine, Busan, Korea
5 Department of Acupuncture and Moxibustion, Changwon Jaseng Hospital of Korean Medicine, Changwon, Korea

ABSTRACT

Distal femur osteotomy (DFO) is a controlled surgical break of the femur performed to allow realignment of the limb. Redistribution of the load aims to correct the abnormal mechanical weight-bearing axes in patients with abnormal alignment of the lower extremities, and degenerative changes in the knee joint. This report describes a complex Korean medicine treatment for a patient complaining of knee pain and stiffness following a DFO. Post-operative care for the patient lasted 78 days with treatment including pharmacopuncture, acupuncture, herbal medicine, cupping therapy, and physiotherapy. The effectiveness of the treatments was evaluated using the numerical rating scale, range of motion of the knee, and by physical examination. After treatment, these evaluation indicators improved, suggesting that the complex Korean medicine treatment received by the patient was an appropriate treatment for knee pain and stiffness following a DFO.

Introduction

Knee osteoarthritis is a major cause of mobility disorders in the elderly. Osteoarthritis is a cause of misalignment of the joint due to the deleterious effects it has upon the joint causing cartilage loss and joint deformation [1]. Patients with osteoarthritis present with limitation of movement to the extent that they cannot perform activities normally. Osteotomy for the knee joint is a surgical technique that disperses the load applied to the lesion. This method corrects the abnormal mechanical axis in patients with abnormal alignment of the lower extremities and degenerative changes in the knee joint. However, unlike artificial joint replacement surgery, following osteotomy for the knee joint, the pain is reduced through surgical intervention, degenerative changes are delayed, and the knee joint is preserved extending the lifespan [2]. In particular, the main indication of distal femur osteotomy (DFO) is osteoarthritis which is accompanied by external deformation and the treatment involves an...
incision on the outer compartment of the knee joint [3].

Korean medicine treatment following a high tibial osteotomy (one of the osteotomies around the knee) has been reported [4], but no cases of DFO have been reported to date. This case study presents the effectiveness of Korean medicine treatment following a DFO.

Case Report

Patient

OOO(M/57)

Chief complaint (onset)

Right knee pain and stiffness (February 2021).

Past medical history (-) / social history (-)

Cerebral palsy (‘65), HTN (‘18), Stem Cells OP in Knee Osteoarthritis (‘20), DFO (‘20)/ 170 cm, 75 kg, Smoking (-), Drinking (-), Occupation: Onsite worker.

Present illness

In early December 2020, the patient experienced right knee pain which was diagnosed at a local orthopedic center as “the right knee cartilage was worn out.” Subsequently, the patient underwent a DFO at a hospital in Seoul. However, the pain was barely relieved. In February 2021, the patient complained of severe right knee pain and stiffness, and was hospitalized for 2 weeks at a local Korean medicine hospital. Although there was slight relief of pain, symptoms of joint stiffness persisted. Therefore, the patient attended a consultation at the Changwon Jaseng Hospital of Korean Medicine on March 11, 2021, and was hospitalized on March 15, 2021.

Treatment period

From March 15, 2021 to May 31, 2021 (78 days of hospitalization).

Radiology

Refer to Fig. 1.

Patient protection policy on patient information use

To protect patients’ personal information, medical records were obtained following approval from the Institutional Review Board of the Haeundae Jaseng Korean Medicine Hospital (IRB File no.: 2021–10–007).

Treatments

Pharmacopuncture

Shinbaro pharmacopuncture (Korea, Namyangju, Jaseng Wonoe Tangjunwon) was administered to the right side at ST35, Ex–LE4, BL38, lateral collateral ligament, and medial collateral ligament. Pharmacopuncture was injected 0.5–1 cc per section applying a 30 gauge × 25 mm needle with a 1 cc syringe (Korea, Gumi, Sinchangmedical) disposable, twice daily. The depth was approximately 1 cm to 2.5 cm.

Acupuncture

Electroacupuncture (3 Hz) was administered at the ST34, ST36, SP9, SP10, GB34, and Ashi points for 15 minutes, twice daily. The needle was size 0.25×40 mm, disposable, and made of standardized stainless steel (Korea, Boryung, The Eastern acupuncture equipment manufacturer).

Herbal medicine

Geoseubhwalhyeoljitong–Tang (120 mL/packet) and Yeongolbogang–Hwan (tablets) were stipulated. Table 1 shows the

<table>
<thead>
<tr>
<th>Herbal medicines</th>
<th>Herbal components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoseubhwalhyeoljitong–Tang</td>
<td>Cinnamomi Ramulus 3.75 g, Dianzhi Herba 3.75 g, Lonicerae Flos 7.5 g, Angelicae Gigantis Radix 3.75 g, Persicae Semen 3.75 g, Akebiae Caulis 7.5 g, Saposnhtikovia Radix 3.75 g, Angelicae Dahuricae Radix 3.75 g, Rehmanniae Radix 3.75 g, Sappan Lignum 1.875 g, Linderae Radix 3.75 g, Achyranthis Bidentatae Radix 3.75 g, Clematidis Radix 3.75 g, Coicis Semen 7.5g, Poria 3.75 g, Peoniae Radix Rubra 3.75 g, Citri Pericarpium 3.75 g, Atractylodis Rhizoma 3.75 g, Cnidii Rhizoma 3.75 g, Gentianae Radix 3.75 g, Polygoni Avicularis Herba 3.75 g, Carthami Flos 1.875 g</td>
</tr>
<tr>
<td>Yeongolbogang–Hwan</td>
<td>Poria cocos Wolf. 0.6 g, Ginseng Radix 0.3 g, Achyranthes bidentata Blume 0.15 g, Asini Cornii Colla 0.01 g, Rehmanniae Radix Recens 0.6 g, Apis cerana 0.6 g, Drynariae Rhizoma 0.1 g</td>
</tr>
</tbody>
</table>
The patient data were recorded every 15 days starting from the date of admission.

Numerical rating scale
The numerical rating scale (NRS) was used to assess the intensity of perceived pain on a scale from 1 to 10. A score of 1 is the complete absence of pain and a score of 10 is the worst pain thinkable [5].

Range of Motion
The range of motion (ROM) regarding articulations are often documented in a patient’s medical file because they are considered important data for the evaluation of disability [6]. The change in the angle of active flexion was used to evaluate the function of the knee joint (the normal operating range of this ROM test was set as 135°).

Physical examination
The time taken whilst standing in place on both feet was recorded to determine the extent of weight the knee joint could be loaded with. In addition, clinical signs of edema, flare, pyrexia, and pain at night at the DFO surgical site were measured. Changes in walking aid and time spent walking were also routinely observed.

Treatment progress
On the day of admission, the right knee was stiff and could not be bent. He presented with severe pain, edema, pyrexia, flare, and night pain. Due to difficulty standing and walking, the patient used a wheelchair. One month post admission, joint stiffness, pain, edema, and flares were gradually relieved, and standing upright was possible for approximately 3 minutes, but a wheelchair was still used. From the 45th day post admission, there was a little edema, fewer flares, and joint stiffness, whilst pain, pyrexia, and night pain were relieved. The patient was able to stand upright for about 10 minutes and walked for about 2 minutes using a walker. From the 60th day post admission, joint stiffness had greatly reduced, and the patient was able to stand upright for about 20 minutes, and walked for about 5 minutes using a walker. When the patient was discharged from hospital on Day 78, it was possible for him to stand for 30 minutes and walk with a walker for up to 10 minutes. In addition, most indicators showed an improvement (Table 2; Figs. 2–4).

Table 2. Changes in Symptoms Documented During Physical Examinations, and the Capacity to Walk.

<table>
<thead>
<tr>
<th></th>
<th>Post admission</th>
<th>Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 1</td>
<td>Day 15</td>
</tr>
<tr>
<td>Edema</td>
<td>+++*</td>
<td>++†</td>
</tr>
<tr>
<td>Flare</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Night pain</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Aid / walking time</td>
<td>W/C</td>
<td>W/C</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

* Severe.
† Moderate.
‡ Minor.
§ Intermittent.
|| Negative.
W/C, wheelchair.
Discussion

A surgical indication for a DFO is a patient under the age of 65 years with a normal inner compartment of the knee joint and femoral joint, and external degenerative arthritis with external deformation. DFO is an effective treatment because it can preserve the knee joint, removing the need for an artificial joint. However, since the rehabilitation period is long and pain may remain, studies are required to determine appropriate treatments following a DFO. An appropriate patient group must be selected for study which is based on the indications [7].

Generally, postoperative complications may arise due to surgical accuracy i.e., if the correction angle was excessive during surgery, degenerative arthritis may occur, or if the correction angle was insufficient, the symptoms of osteoarthritis may not improve (surgery failure) [8]. In this case study the patient presented with pain and stiffness which occurred in the affected area due to insufficient management after surgery. However, the discomfort was greatly reduced by using complex Korean medicine treatment and the patient was discharged on Day 78 post-admission.

Looking at the Korean medicine treatment performed on the patient, Shinbaro pharmacopuncture (which contains components of GCSB-5) has been reported to exert anti-inflammatory activity which have been correlated with reduced nitric oxide synthase and inhibition of cyclooxygenase-2 [9]. These mechanisms were reported to result in reduced inflammation of the knee joint, and improved movement and reduced level of pain [9]. The effect of electroacupuncture performed around the knee to control pain (although it could not be differentiated from the pain-relieving effect of morphine) reportedly uses different opioid systems in the central nervous system which were activated according to the specific frequency used for electroacupuncture [10]. Cupping therapy is transmitted to the central nervous system through the reflective pathways of the skin and vascular receptors to balance excitement and suppression. In addition, cupping, increases the capacity for each body part to control and enhance metabolism in the tissues corresponding to the affected area [11]. Therefore, cupping may have been effective in lessening pain and stiffness by reducing edema, flares, and pyrexia around the surgical area. Through the use of manual therapy, where the muscle is relaxed, joint movement was improved, furthermore, with thigh muscle strengthening exercises the patient’s time in an upright position, and aided walking time increased.

The patient in this case report underwent DFO, and failed to receive proper care. After surgery, the treatment received by the patient made the symptoms worse than before surgery. Adapting the complex Korean medicine treatment which a patient is receiving can have a significant effect on the symptoms of pain and stiffness around the knee. However, evidence supporting this treatment modality is weak, since this is only 1 patient in a case report. Randomized controlled clinical trials, and comprehensive studies on complex Korean medicine treatment for patients presenting with discomfort following a DFO is necessary for high-quality evidence.

Conflict of Interest

The authors have no conflicts of interest to declare.

Funding

None.

Ethical Statement

This research did not involve any human or animal experiments.

Data Availability

All relevant data are included in this manuscript.

References

