In this Case Report, a patient with Buerger’s disease who had a leg amputation below his lower right knee and a vascular bypass of right leg, developed a wound caused by his prosthetic leg and subjective discomfort. The patient received skin flap surgery but the wound did not heal properly. He was admitted to the Korean Medicine Hospital where his wound, right leg coldness, and phantom pain were treated with combined Korean medicine. The patient was hospitalized again where he underwent micro-drilling surgery. The patient was re-admitted to the Korean Medicine Hospital where he received combined Korean medicine treatment (CKMT) and carbon arc light treatment (CALT) for his wound, leg coldness, stiffness, and hypoplasia. The temperature of his right leg increased, the numeric rating scale score for assessing pain fell from 5 to 1.5, and subjective discomfort was reduced (< 20%) suggesting this may be an effective treatment.

©2021 Korean Acupuncture & Moxibustion Medicine Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Buerger’s disease, also known as thromboangiitis obliterans, was first described by Buerger in 1908, and was reviewed recently [1]. It is a non-lethal atherosclerotic and fractional inflammatory disease that usually occurs in small and medium arteries and veins of the extremities [2]. An amputation can be performed if ischemic ulcers develop and progress to gangrene. The risk of amputation rises gradually over 5 years, to 38% over 10 years, and to 56% over 20 years. Amputation can cause coldness, phantom pain, numbness, stiffness, and hypoesthesia for the amputated leg [3]. There is research on the primary treatment of Burger’s disease, but little research has been performed on the management of symptoms post-amputation, and how to treat wounds created around the amputated area due to prosthetics. A case report following amputation of a limb affected by Buerger’s disease was reported in the Korean traditional medicine field [4] where claudication was addressed but not coldness, phantom pain, numbness, stiffness, and hypoesthesia. This current study used carbon arc light treatment (CALT) with combined Korean medicine treatment (CKMT) which demonstrated a beneficial effect on coldness and other discomforts in a patient with an amputated limb.

Case Report

Patient

OOO (M/59)

Chief complaint

Phantom pain, coldness, numbness, stiffness, and hypoesthesia.

Medical history

He had been smoking for approximately 20 years, stopped smoking for approximately 1 year in 2020, and then started smoking again in January 2021. No disease history relevant for blood clotting conditions. No diabetes. No autoimmune disease.
Family history
None

Western medications
Anpl-one sustained release tablet 300 mg (B/pc, sarpogrelate HCl 300 mg)
Aspirin protect tablet 100 mg (B/pc, aspirin enteric coated 100 mg)
Vastinan modified release tablet (B, D/pc, trimetazidine 2HCl 35 mg)
Trental tablet 400 mg (B, D/pc, pentoxifylline 400 mg)
Bi-sibe tablet 10/20 mg (B, D/pc, ezetimibe 10 mg S imvastatin 20 mg)
Gliatamin tablet (B, L, D/pc, choline alfoscerate 400 mg)
Esomezol capsule 20 mg (B/pc, esomeprazole strontium tetrahydrate 24.6 mg)
Sodium fusidate ointment greencross (p.r.n, sodium fusidate)

Present illness
Necrosis occurred after being stamped on the back of the foot in December 2019 after which the patient underwent lower right knee amputation and vascular bypass of right leg at Soonchunhyang university hospital. By April 2020, the patient had undergone right knee rehabilitation treatment at the local hospital rehabilitation medicine department. The patient experienced right leg coldness, stiffness, and hypoesthesia. In July 2020, while walking on the prosthetic leg, an open wound measuring 2 cm occurred due to skin abrasions. Since then, he received skin flap surgery at Soonchunhyang university hospital. However, the open wound remained unchanged. From February 5, 2021, to March 21, 2021, the patient was hospitalized in the Korean Medicine Hospital. After the patient was discharged, he underwent micro-drilling surgery at Soonchunhyang University Hospital and was hospitalized again. After treatment from March 29, 2021, to April 27, 2021, the patient improved significantly, the wound healed, and he was discharged.

Duration of treatment
The 1st hospitalization period was for 44 days, between February 5 and March 3, 2021. The 2nd hospitalization period was for 29 days between March 21 - April 27, 2021.

Treatments

Acupuncture
The acupuncture points were ST32, ST33, ST34, ST35, SP10, LR9, GB31, GB32, GB33, Ex-LE2. It was performed with 0.25 × 30 mm stainless steel (Eastern acupuncture equipment manufacturer, Boryung, Korea). Acupuncture was performed about 2 cm away from wound. It was performed with pharmacupuncture and electroacupuncture. Electroacupuncture STN-110 (Stratek, Seoul, Korea) was performed once daily for 15 minutes, at a stimulation frequency of 3 Hz.

Pharmacopuncture
Pharmacopuncture (Korean Pharmacopuncture Institute, Seoul, Korea) was performed only during the first hospitalization. Hominis placenta pharmacopuncture was mainly used for this treatment. The acupoints ST34, ST33, ST32, SP10, and muscles and ligaments around the amputated area were selected, and 1.0 mL disposable syringes and needles (Jungrim Medical, Seoul, Korea, 30 G × 12.7 mm needle) were used. Doses of 0.05-0.3 mL were injected into the knee wound periphery, and the total dose injected was 1.0 mL.

Herbal medicine
Two herbal medicines were used, Bojungikgitang soft extract during the 1st hospitalization and Palmultang soft extract during the 2nd hospitalization (Table 2).

Physiotherapy
Interferential current therapy and hot pack treatment were administered to the quadriceps femoris to improve peripheral blood circulation and soften the stiffness of the amputated area.

Fig. 1. Lower extremity angiogram of a varicose vein in 3D (three dimensional). The image shows a femoropopliteal vascular bypass of right leg (red arrow). A vascular bypass was performed using blood vessel prosthesis. It was about 32.44 cm long. In the angiogram of the lower extremities, blood flow was cut off in the distal femoral artery of the right lower extremities (blue arrow).

Fig. 2. Pulse wave diagnostic results. The image shows the ankle brachial index (ABI). On October 31, 2017, the ABI of the right ankle was 0.65 indicating severe peripheral artery occlusive disease and the left ABI was normal at 1.12. After right leg amputation, on March 10, 2020, the right ABI improved to 0.96, but the left ABI fell to 0.50.
Moxibustion treatment
Indirect electric moxibustion (Technoscience, Seoul, Korea) therapy was administered once daily at ST34, ST33, ST32, and SP10 to make the effect of temperature rise and blood flow smooth.

CALT
CALT (Hyumedi, Seoul, Korea) was performed daily. It was applied to the amputated area at 10:00 AM for about 15 minutes at a distance of about 35 cm. CALT was performed completely in the first hospitalization and only half the treatment was performed in the 2nd hospitalization.

Evaluation

Digital infrared thermal imaging
On the day of the test, the accuracy of the test was ensured by excluding various external factors such as preventing the attachment of aids, accessories, and patches that could irritate the patient's skin. The digital infrared thermal imaging (DITI; OsongLife, Bucheon, Korea) test was conducted in an environment where light and heat were blocked from the outside. Humidity was 60-65% and the temperature was 21-23°C. The patient stood in the examination room for approximately 15 minutes, adjusted to room temperature, and was photographed using an infrared body heat diagnostic device (Fig. 3). DITI of right leg was measured every week in the 1st hospitalization period.

Numeric rating scale
The patient's pain was assessed daily using the numeric rating scale (NRS). A score of 0 indicated no pain, and 10 indicated the most severe pain. The patient usually complained of night pain and had phantom pain with his legs moving uncontrollably. After the treatment, the patient said the amputated area had become softer and he felt little phantom pain. The symptoms of legs moving independently decreased from 2-3 times at admission to 0 at discharge (Fig. 4).

Open wound photographs
To record the wound healing, pictures of the wound around the knee were taken periodically. The image shows the healing process of the wound (Fig. 5).
Discussion

When Buerger’s disease worsens, the leg frequently feels cold and painful, and if it gets worse, amputation may be necessary. In this case report, a patient with Berger’s disease, post-amputation, complained of discomfort and wounds from wearing a medical prosthetic device. However, following CKMT with CALT, the right leg temperature increased not only according to the patient but also as measured by DITI. This device detects temperature and shows the distribution of heat on the body’s surface [5] (Fig. 3). The patient experienced pain relief as observed using the NRS; the score was 5 at the time of admission and 1.5 at discharge (Fig. 4). At admission, subjective symptoms stiffness, hypoesthesia, and coldness declined from 100% to 16%, 10%, and 0%, respectively, at discharge (Fig. 6). In addition, the patient said that the muscle around his knee was very soft and the night pain had improved a lot.

The patient’s discomfort and wound were treated with CKMT (Table 1). Acupuncture can increase temperature and blood flow [6], it can control local pain and act downstream on inhibition systems such as serotonin, and serotonin [7]. Seo et al [7] used LI1, LI2, LI3, HT8, PC8, PC7, LU9 acupoints for phantom limb pain after amputation, and Kang [4] used LI11, SP6, GB34, BL60, SP3, KI6, BL62 acupoints for toe amputation due to Buerger’s disease. In this current case, acupoints were also selected around wounds and muscles for a healing effect which would have anti-inflammatory effects on the joints and nerves [4,8]. Hominis placenta pharmacopuncture was also used because it has a wound

Subjective state of the patient

On day 1 of hospitalization, the patient complained of hyperesthesia, stiffness, numbness, coldness, and sensory degradation. On day 11, and day 35 of hospitalization, his discomfort remained approximately 60% and 30%, respectively. On April 27, 2021, the pain remained approximately 10%. His senses were approximately 90% normal throughout the day (Fig. 6).

Table 1. Treatment Intervention.

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterilization</td>
<td>No. times</td>
<td>Once a day at 5 AM</td>
</tr>
<tr>
<td></td>
<td>Ingredient</td>
<td>Saline, povidone (Dongindang, Seoul, Korea), ointment (Greencross, Seoul, Korea, Sodium fusidate 20 mg), hydrogel dressing (Genewell, Hwaseong, Korea), band, superix (BANDGOLD, Anyang, Korea)</td>
</tr>
<tr>
<td></td>
<td>Method</td>
<td>Apply phobidone first and saline 1 min later. Third, apply ointment. After attaching the hydrogel dressing, fix it with Superfix.</td>
</tr>
<tr>
<td>Needling details</td>
<td>point used</td>
<td>ST32, ST33, ST34, ST35, SP10, LR9, GB31, GB32, GB33, Ex-LE2 and Ashi-point</td>
</tr>
<tr>
<td></td>
<td>No. needles</td>
<td>Approximately 15</td>
</tr>
<tr>
<td></td>
<td>Distance to the wound</td>
<td>1-2 cm away from the wound</td>
</tr>
<tr>
<td></td>
<td>Depths of insertion</td>
<td>0.3-0.5 cm on acupoints</td>
</tr>
<tr>
<td></td>
<td>Combination</td>
<td>Electro-acupuncture, pharmacopuncture</td>
</tr>
<tr>
<td>CALT</td>
<td>Region to be treated</td>
<td>Amputated leg (the area above the knee)</td>
</tr>
<tr>
<td></td>
<td>Duration</td>
<td>15 min</td>
</tr>
<tr>
<td></td>
<td>No. times</td>
<td>Once a day at 10 AM</td>
</tr>
<tr>
<td></td>
<td>Distance to region</td>
<td>Approximately 35 cm</td>
</tr>
<tr>
<td></td>
<td>Period</td>
<td>50 d</td>
</tr>
</tbody>
</table>

CALT, carbon arc light treatments.
healing effect [9]. Of note, there was no symptoms of infection when acupuncture and pharmacopuncture are performed on the amputated area. Bojungikitang and Palmultang soft extracts for the 1st and 2nd admissions, respectively, were used for improving various symptoms of discomfort and wound healing, in another case report, Palmulgunjatang (other forms of Palmultang) was prescribed for Raynaud due to Buerger’s disease [10]. It was also reported that Bojungikgitang increased the proliferation response of T cells [11]. Palmultang was also used to rid diseases in the gi and the blood in some studies [12,13].

There have also been cases of CKMT for Buerger’s disease with Raynaud phenomenon and claudication, ulcer and other symptoms. [10,14,15]. However, there is a lack of studies on post-amputation in patients with Berger’s disease. This study showed that discomfort and pain from a wound after amputation was successfully reduced by CKMT. Furthermore, this current study used CALT which had a great effect on sensations of coldness and other discomfort in patient.

CALT has been widely used in the treatment of bedsores, but it is the first time this treatment has been used for symptoms due to amputation in Buerger’s disease. In CKMT, CALT corresponds to Jeonggyeongrak therapy and acts to promote metabolism [16]. CALT has similarities to western medicine laser therapy, but it is not widely used in CKMT.

CALT appears to be an effective treatment post-amputation in Berger’s disease but may be effective in the treatment of other types of wounds. The limitation of this study is that only 1 case was investigated, and no treatment was used in isolation so the individual effect of a particular treatment cannot be ascertained. The length of the hospitalization treatment was long, so improvements may be due to the period of time post-surgery but this was due to micro-drilling surgery for the skin flap. Without a large number of patients and a control group, further studies are necessary to determine the effects of CKMT with CALT. However, the study is a rare case of a patient who underwent amputation due to Buerger’s disease had CKMT with CALT to treat phantom pain, coldness, numbness, stiffness, hypoesthesia, and a wound caused by a prosthetic, and recovered successfully. This case suggests that CKMT with CALT are effective for post-amputation treatment of Buerger’s disease.

Conflicts of Interest

The authors have no conflicts of interest to declare.

Acknowledgments

The report is an independent from the sponsor and competing interest.

Ethical Statement

This research did not involve any human or animal experiment.

References

Appendix A. Timeline of order according to hospitalization.