A Comparative Study on Heat Transfer Characteristics in Tissue Model with Application of Heating or Cooling Therapeutic Modalities

Article information

J Korean Acupunct Moxib Soc. 2013;30(4):125-138
Publication date (electronic) : 2013 September 20
doi : https://doi.org/10.13045/acupunct.2013029
1Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Dongguk University
2Acupuncture, Moxibustion & Meridian Research Group, Division of Medical Research, Korea Institute of Oriental Medicine

This study was supported by a grant of the Traditional Korean Medicine R&D Project, Ministry of Health & Welfare, Republic of Korea(B110069)

*Corresponding author : Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Dongguk University, 27, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-773 Republic of Korea, Tel : +82-31-961-9122 E-mail : chuckman@dongguk.edu
Received 2013 August 14; Revised 2013 August 27; Accepted 2013 August 28.

Abstract

Objectives :

This study aimed to investigate temperature characteristics by heat transfer type of therapeutic modalities.

Methods :

We selected heating and cooling modalities that are frequently used in clinical by heat transfer type: conduction, convection, radiation, and conversion. We used ham as tissue model, and applied the modalities for 30 minutes. We measured real-time changed temperature(°C) of the surface, 2, 4, 6, 8, 10, 12, and 14 mm depth.

Results :

  1. In conduction-using hot pack, ice pack, and CryoStamp heating-cooling combination therapy unit(40 °C/∼15 °C), the surface temperature sharply rose close to equilibrium in first 5 minutes.

  2. In convection-using smokeless moxa, temperature slowly rose to the maximum at 25-minute elapsed time. But in another convection-using CRAiS cryotherapy device, result was similar to that of conduction.

  3. In radiation-using infrared lamp, result was similar to that of conduction, but not reached equilibrium during applying time.

  4. In conversion-using ultrasound device, temperature was the highest at 6 mm depth, and not reached equilibrium during applying time.

Conclusions :

We could comprehend temperature characteristics and proper use of modalities by heat transfer type. It would be necessary to consider in vivo physical conditions in further studies.

Fig. 1.

Heating and cooling modalities

Modalities using conduction : A, hot water bottle used as hot pack; B, rubber bag used as ice pack; C, CryoStamp heating-cooling combination therapy unit.

Modalities using convection : D, air-warming smokeless moxa; E, CRAiS cryotherapy device.

Modality using radiation : F, infrared lamp.

Modality using conversion : G, ultrasound device.

Fig. 2.

Experiment apparatus

A : a cut of tissue model.

B : a punch that is used in cutting tissue model.

C : an empty sample holder.

D : complete experiment apparatus with air-warming smokeless moxa applied.

A tissue model is set in sample holder with eight thermocouples inserted, while the thermocouples are connected to the data-acquiring device that transfers measured data to the computer.

Fig. 3.

Changed temperature by heating methods in various depths of tissue model

We applied heating modalities to tissue model for 30 minutes. After that, we removed the modalities and observed temperature recovery for 30 minutes.

Fig. 4.

Changed temperature by cooling methods in various depths of tissue model

We applied cooling modalities to tissue model for 30 minutes. After that, we removed the modalities and observed temperature recovery for 30 minutes.

Heating or Cooling Modalities by Heat Transfer Type

Changed Temperature in Heating and Cooling Modalities using Conduction(°C)

Changed Temperature in Heating and Cooling Modalities using Convection(°C)

Changed Temperature in Heating Modality using Radiation(°C)

Changed Temperature in Heating Modality using Conversion(°C)

References

1. Tepperman PS, Devlin M. The therapeutic use of local heat and cold. Can Fam Physician 1986;32:1110–4.
2. Nadler SF, Weingand K, Kruse RJ. The physiologic basis and clinical applications of cryotherapy and thermotherapy for the pain practitioner. Pain Physician 2004;7(3):395–9.
3. Oh Chung-hee Rehabilitation Medicine 3rd editionth ed. Seoul: Daehakseorim; 2011. p. 79–89.
4. Oosterveld FG, Rasker JJ. Effects of local heat and cold treatment on surface and articular temperature of arthritic knees. Arthritis Rheum 1994;37(11):1578–82.
5. Trowbridge CA, Draper DO, Feland JB, Jutte LS, Eggett DL. Paraspinal musculature and skin temperature changes: comparing the Thermacare HeatWrap, the Johnson & Johnson Back Plaster, and the ABC Warme-Pflaster. J Orthop Sports Phys Ther 2004;34(9):549–58.
6. Yong-jae Hong, Cheul Kim, Moon-soo Park, Young-jun Kim. Changes of pre-auricular cutaneous blood flow and skin temperature after dry heat therapy and moist heat therapy. Journal of Korean Academy of Oral Medicine 2006;31(1):47–57. Korean.
7. Misook Shin, Byungcheul Shin, Myeongjong Lee, et al. The utilization of physical therapies in the Korean medicine clinics: A survey for National Health Insurance planning. J Oriental Rehab Med 2009;19(3):101–9.
8. Lindsay D, Dearness J, Richardson C, Chapman A, Cuskelly G. A survey of electromodality usage in private physiotherapy practices. Australian Physiotherapy 1990;36(4):249–56.
9. Allen RJ. Physical agents used in the management of chronic pain by physical therapists. Phys Med Rehabil Clin N Am 2006;17(2):315–45.
10. Draper DO, Harris ST, Schulthies S, Durrant E, Knight KL, Ricard M. Hot-Pack and 1-MHz Ultrasound Treatments Have an Additive Effect on Muscle Temperature Increase. J Athl Train 1998;33(1):21–4.
11. Kyung-min Shin. A comparative study on thermal characteristics between laser and indirect moxibustion in tissue models [dissertation] Seoul: Dongguk Univ; 2012.
12. Keun-jo Kim, Cu-ri Lee. A Study about change in the temperature by each region and time after hot & cold application. The journal of Korean academy of physical therapist 1995;2(3):577–86.
13. Akgun K, Korpinar MA, Kalkan MT, Akarirmak U, Tuzun S, Tuzun F. Temperature changes in superficial and deep tissue layers with respect to time of cold gel pack application in dogs. Yonsei Med J 2004;45(4):711–8.
14. Se-young Lim, Sang-min Yoo, Kyeong-yeon Bae, Yong-hyun Lee, Jae-joong Jung. Research on the Effect and Satisfaction between Independenced and Parallelism Treatment of Acupuncture and Physical of Lumbago Patients. The Journal of Korean Acupuncture & Moxibustion Society 2005;22(6):75–84.
15. Kyu-hyun Park, Jae-yoon Kim, Rae-Joon Park. Biophysical Principles of Superficial Heating and Deep Heating Agents. The journal of Korean Society of Physical Therapy 2002;14(1):197–203.
16. Jun-Hyuk Jang, Kyung-ho Kim, Jang-hyun Kim. Effect of the Ceragem Master Heat Bed for Posterior Neck Pain and Low Back Pain. The journal of Korean oriental pediatrics 2000;14(2):133–40.
17. Kang-hee Cho. Physical Therapy and Pharmacological Treatment of Lumbar Disc Herniations. Journal of the Korean Medical Association 2004;47(9):827–43.
18. The Korean Academy of Oriental Rehabilitation Medicine Oriental Rehabilitation Medicine 2nd editionth ed. Seoul: Koonja Press; 2007. p. 317–8.
19. Lienhard JH, Lienhard JH. A Heat Transfer Textbook 3rd edth ed. Cambridge, MA, USA: Phlogiston Press; 2008. p. 10–34.
20. Kamen G. Foundations of Exercise Science Philadelphia: Lippincott Williams & Wilkins; 2001. p. 139.
21. Knight KL, Draper DO. Therapeutic Modalities: The Art and Science 2nd editionth ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 185.
22. Yoon-hong Kim, Seung-ho Lee, Su-jung Yeo, Il-hwan Choe, Young-kon Kim, Sabina Lim. The Study on Temperature Measurement for the Standardization of Moxibustion. The Journal of Korean Acupuncture & Moxibustion Society 2008;25(2):129–38.
23. Kai-hsia Wang, Eun-jung Kim, Hyun-seok Cho, Kap-sung Kim, Seung-deok Lee, Kyung-ho Kim. A Comparative Study on Buffer Characteristic of Indirect Moxibustion. The Journal of Korean Acupuncture & Moxibustion Medicine Society 2012;29(5):75–85.
24. Geon-hui Lee, Geon-mok Lee, Uo-suk Guk. Experimental Study on the Characteristics of Combustion in Indirect Moxibustion with Cake Insulation. The Journal of Korean Acupuncture & Moxibustion Society 2004;21(6):233–48.
25. Kim YH, Baek SS, Choi KS, Lee SG, Park SB. The effect of cold air application on intra-articular and skin temperatures in the knee. Yonsei Med J 2002;43(5):621–6.
26. The Korean Academy of Oriental Rehabilitation Medicine. Oriental Rehabilitation Medicine 2nd editionth ed. Seoul: Koonja Press; 2007. p. 333.
27. Hayes BT, Merrick MA, Sandrey MA, Cordova ML. Three-MHz Ultrasound Heats Deeper Into the Tissues Than Originally Theorized. J Athl Train 2004;39(3):230–4.
28. Aubry JF, Pernot M, Marquet F, Tanter M, Fink M. Transcostal high-intensity-focused ultrasound: ex vivo adaptive focusing feasibility study. Phys Med Biol 2008;53(11):2937–51.
29. Merrick MA, Mihalyov MR, Roethemeier JL, Cordova ML, Ingersoll CD. A Comparison of Intramuscular Temperatures During Ultrasound Treatments With Coupling Gel or Gel Pads. J Orthop Sports Phys Ther 2002;32(5):216–20.
30. Oh-young Kim, Ki-taek Seo, Chang-young Choi, et al. Development of Jelly-type Simulating Human Tissue for Research on Hyperthermia by High Frequency Magnetic Field. Applied Chemistry 2006;10(2):393–6.
31. Ji-yong Cho, Jung-kyung Kim. Visualization of Temperature Distribution Deep Inside the Agar Gel Tissue Phantom Heated Using Moxibustion and 1064 nm Infrared Laser. Journal of the Korean Society of Visualization 2010;8(4):54–9.
32. Habash RW, Bansal R, Krewski D, Alhafid HT. Thermal therapy, part 1: an introduction to thermal therapy. Crit Rev Biomed Eng 2006;34(6):459–89.

Article information Continued

Fig. 1.

Heating and cooling modalities

Modalities using conduction : A, hot water bottle used as hot pack; B, rubber bag used as ice pack; C, CryoStamp heating-cooling combination therapy unit.

Modalities using convection : D, air-warming smokeless moxa; E, CRAiS cryotherapy device.

Modality using radiation : F, infrared lamp.

Modality using conversion : G, ultrasound device.

Fig. 2.

Experiment apparatus

A : a cut of tissue model.

B : a punch that is used in cutting tissue model.

C : an empty sample holder.

D : complete experiment apparatus with air-warming smokeless moxa applied.

A tissue model is set in sample holder with eight thermocouples inserted, while the thermocouples are connected to the data-acquiring device that transfers measured data to the computer.

Fig. 3.

Changed temperature by heating methods in various depths of tissue model

We applied heating modalities to tissue model for 30 minutes. After that, we removed the modalities and observed temperature recovery for 30 minutes.

Fig. 4.

Changed temperature by cooling methods in various depths of tissue model

We applied cooling modalities to tissue model for 30 minutes. After that, we removed the modalities and observed temperature recovery for 30 minutes.

Table 1.

Heating or Cooling Modalities by Heat Transfer Type

Conduction Hot pack, hydrocollator pack, wool pack, paraffin bath, ice pack, ice massage, heating-cooling combination therapy unit
Convection Fluidotherapy, hydrotherapy, moistair bath, hotair bath, air-warming smokeless moxa, cold whirlpool, vapo-coolant spray, cryotherapy device using cool air
Radiation Infrared lamp, TDP lamp
Conversion Ultrasound, microwave, shortwave diathermy

Table 2.

Changed Temperature in Heating and Cooling Modalities using Conduction(°C)

Therapeutic modalities Elapsed time(min) 0 mm (surface) 2 mm depth 4 mm depth 6 mm depth 8 mm depth 10 mm depth 12 mm depth 14 mm depth p
Heating Hot pack 5 8.65±2.44 5.57±1.10 3.10±0.58 3.06±0.51 1.64±0.32 0.99±0.16 0.24±0.20 0.14±0.20 0.0000*
10 10.57±2.43 7.85±1.53 5.51±0.91 5.40±0.88 3.82±0.65 2.85±0.39 1.55±0.34 1.28±0.38 0.0000*
15 11.82±2.36 9.32±1.75 7.22±1.17 7.08±1.12 5.55±0.90 4.47±0.61 2.98±0.51 2.58±0.55 0.0000*
20 12.55±2.34 10.31±1.87 8.41±1.37 8.25±1.33 6.81±1.10 5.72±0.81 4.19±0.68 3.75±0.72 0.0000*
25 12.94±2.33 10.92±1.97 9.19±1.50 9.02±1.46 7.67±1.24 6.65±0.95 5.13±0.82 4.67±0.84 0.0000*
30 13.08±2.35 11.27±2.04 9.66±1.63 9.51±1.58 8.27±1.35 7.29±1.08 5.83±0.92 5.39±0.95 0.0000*

Cryo stamp (40 °C) 5 21.69±0.79 17.32±0.89 6.52±0.68 4.76±0.40 4.40±0.34 2.95±0.37 2.16±0.31 0.56±0.30 0.0000*
10 22.39±0.58 19.16±0.84 9.90±0.78 8.22±0.55 7.77±0.46 6.14±0.65 5.05±0.47 2.37±0.59 0.0000*
15 22.78±0.69 19.86±0.72 11.54±0.78 9.97±0.63 9.50±0.53 7.93±0.76 6.80±0.50 3.86±0.75 0.0000*
20 22.80±0.61 20.19±0.75 12.48±0.80 11.03±0.68 10.57±0.54 9.08±0.79 7.95±0.53 4.97±0.83 0.0000*
25 22.88±0.55 20.44±0.68 13.08±0.78 11.72±0.66 11.28±0.57 9.84±0.81 8.74±0.54 5.78±0.87 0.0000*
30 22.76±0.52 20.52±0.65 13.51±0.78 12.22±0.69 11.77±0.58 10.41±0.80 9.32±0.54 6.39±0.89 0.0000*

Cooling Ice pack 5 −5.96±1.73 −5.04±1.73 −3.37±1.17 −2.92±1.01 −1.80±0.48 −1.29±0.37 −0.63±0.12 −0.48±0.05 0.0000*
10 −7.80±1.88 −6.93±2.01 −5.30±1.47 −4.87±1.37 −3.61±0.77 −3.01±0.67 −1.91±0.32 −1.59±0.24 0.0000*
15 −9.17±1.90 −8.28±2.13 −6.75±1.58 −6.37±1.55 −5.11±0.93 −4.50±0.87 −3.22±0.51 −2.82±0.43 0.0000*
20 −10.12±1.89 −9.30±2.22 −7.87±1.61 −7.52±1.64 −6.31±1.04 −5.71±1.01 −4.37±0.65 −3.94±0.54 0.0000*
25 −10.84±1.85 −10.11±2.23 −8.73±1.62 −8.40±1.68 −7.25±1.10 −6.70±1.10 −5.35±0.76 −4.89±0.67 0.0000*
30 −11.45±1.92 −10.76±2.31 −9.45±1.72 −9.18±1.77 −8.05±1.17 −7.51±1.18 −6.17±0.86 −5.71±0.77 0.0000*

Cryo stamp (−15 °C) 5 −16.66±1.25 −12.20±1.71 −3.87±0.66 −2.90±0.75 −2.29±0.45 −1.57±0.32 −1.02±0.42 −0.19±0.06 0.0000*
10 −19.60±1.19 −16.06±1.41 −7.84±0.94 −6.67±1.06 −5.82±0.66 −4.70±0.54 −3.65±0.74 −1.65±0.21 0.0000*
15 −20.32±1.07 −17.37±1.15 −9.96±1.00 −8.81±1.08 −7.98±0.73 −6.82±0.62 −5.63±0.83 −3.19±0.31 0.0000*
20 −20.73±0.66 −18.01±0.99 −11.22±1.01 −10.13±1.11 −9.33±0.75 −8.22±0.68 −7.02±0.86 −4.45±0.40 0.0000*
25 −20.86±0.65 −18.38±0.89 −12.07±1.02 −11.04±1.09 −10.29±0.79 −9.21±0.70 −8.04±0.89 −5.45±0.41 0.0000*
30 −20.33±1.05 −18.61±0.81 −12.67±1.07 −11.71±1.13 −10.97±0.85 −9.97±0.79 −8.81±0.97 −6.24±0.43 0.0000*

Values are shown as mean±SD.

*:

statistically significant by ANOVA(p<0.05).

Table 3.

Changed Temperature in Heating and Cooling Modalities using Convection(°C)

Therapeutic modalities Elapsed time(min) 0 mm (surface) 2 mm depth 4 mm depth 6 mm depth 8 mm depth 10 mm depth 12 mm depth 14 mm depth p
Heating Air-warming smokeless moxa 5 3.47±1.52 2.77±1.08 1.65±0.96 1.08±0.47 0.63±0.37 0.26±0.22 0.02±0.18 −0.08±0.19 0.0000*
10 10.23±4.00 8.72±3.75 5.34±2.16 4.11±1.73 2.79±1.27 1.66±0.80 0.78±0.55 0.35±0.42 0.0000*
15 17.04±3.76 15.06±3.91 10.56±2.59 8.79±2.55 6.48±2.04 4.51±1.60 2.63±1.19 1.63±0.81 0.0000*
20 20.08±3.01 18.40±2.79 14.12±1.99 12.36±2.07 9.86±1.79 7.53±1.71 4.97±1.44 3.59±0.99 0.0000*
25 20.20±2.37 18.99±2.03 15.39±1.77 13.92±1.65 11.69±1.56 9.48±1.56 6.85±1.39 5.33±0.96 0.0000*
30 17.77±1.54 17.18±1.35 14.75±1.37 13.74±1.11 12.04±1.26 10.23±1.26 7.90±1.17 6.49±0.85 0.0000*

Cooling CRAiS cryotherapy device 5 −14.87±1.13 −13.06±1.28 −10.63±1.06 −6.09±0.89 −4.95±0.68 −4.03±0.47 −2.24±0.34 −1.97±0.28 0.0000*
10 −17.13±0.93 −15.97±0.99 −14.53±0.91 −11.09±0.96 −10.06±0.87 −9.22±0.66 −7.04±0.68 −6.59±0.55 0.0000*
15 −17.96±0.75 −17.17±0.81 −16.24±0.81 −13.81±0.80 −12.99±0.79 −12.34±0.63 −10.46±0.70 −10.06±0.61 0.0000*
20 −18.43±0.78 −17.86±0.73 −17.20±0.81 −15.37±0.69 −14.68±0.67 −14.19±0.57 −12.63±0.58 −12.30±0.56 0.0000*
25 −18.68±0.71 −18.21±0.71 −17.77±0.76 −16.30±0.59 −15.73±0.57 −15.35±0.53 −14.06±0.45 −13.76±0.50 0.0000*
30 −18.79±0.54 −18.42±0.59 −18.06±0.71 −16.89±0.50 −16.40±0.47 −16.08±0.49 −15.03±0.34 −14.76±0.48 0.0000*

Values are shown as mean±SD.

*:

statistically significant by ANOVA(p<0.05).

Table 4.

Changed Temperature in Heating Modality using Radiation(°C)

Therapeutic modalities Elapsed time(min) 0 mm (surface) 2 mm depth 4 mm depth 6 mm depth 8 mm depth 10 mm depth 12 mm depth 14 mm depth p
Heating Infrared lamp 5 7.66±1.17 7.35±1.29 5.06±1.45 4.19±0.74 2.79±0.51 1.80±0.37 0.64±0.31 −0.08±0.20 0.0000*
10 10.79±1.91 10.58±2.00 8.32±2.09 7.37±1.33 5.76±1.00 4.40±0.77 2.64±0.72 1.42±0.56 0.0000*
15 13.07±2.42 12.99±2.49 10.85±2.57 9.91±1.77 8.29±1.41 6.80±1.12 4.83±1.09 3.38±0.90 0.0000*
20 14.86±2.70 15.02±2.85 12.95±2.95 12.04±2.18 10.44±1.76 8.91±1.45 6.87±1.43 5.33±1.24 0.0000*
25 16.47±2.96 16.63±3.08 14.70±3.20 13.80±2.46 12.25±2.07 10.73±1.73 8.70±1.73 7.12±1.54 0.0000*
30 17.79±3.01 18.08±3.26 16.21±3.40 15.29±2.65 13.81±2.27 12.29±1.93 10.28±1.95 8.71±1.75 0.0000*

Values are shown as mean±SD.

*:

statistically significant by ANOVA(p<0.05).

Table 5.

Changed Temperature in Heating Modality using Conversion(°C)

Therapeutic modalities Elapsed time(min) 0 mm (surface) 2 mm depth 4 mm depth 6 mm depth 8 mm depth 10 mm depth 12 mm depth 14 mm depth p
Heating Ultrasound device 5 14.19±2.40 16.36±3.07 16.29±3.21 16.54±3.06 16.03±3.54 14.10±2.88 13.18±3.64 11.67±2.67 0.0759
10 20.16±2.67 22.95±4.73 23.27±3.95 25.20±4.50 24.02±4.40 22.46±3.86 21.15±4.23 19.51±3.55 0.2615
15 25.13±4.72 27.75±5.33 28.87±4.21 31.40±5.25 30.17±5.30 28.70±4.50 27.30±4.76 25.80±4.28 0.3556
20 30.10±6.60 32.19±6.26 33.86±4.74 35.90±5.26 34.69±5.25 33.19±4.49 31.73±4.62 30.28±4.26 0.4994
25 33.44±6.45 35.70±5.90 38.04±4.37 40.13±4.69 38.70±4.75 37.05±4.43 35.65±4.12 34.04±4.19 0.2665
30 36.85±6.65 39.07±5.69 41.69±3.63 44.09±4.20 42.15±4.24 40.68±4.55 39.30±4.10 37.56±4.25 0.1705

Values are shown as mean±SD.

There was no statistically significant difference by ANOVA(p>0.05).